Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements.

نویسندگان

  • Brian J Kirby
  • David S Reichmuth
  • Ronald F Renzi
  • Timothy J Shepodd
  • Boyd J Wiedenman
چکیده

This paper presents the first systematic engineering study of the impact of chemical formulation and surface functionalization on the performace of free-standing microfluidic polymer elements used for high-pressure fluid control in glass microsystems. System design, chemical wet-etch processes, and laser-induced polymerization techniques are described, and parametric studies illustrate the effects of polymer formulation, glass surface modification, and geometric constraints on system performance parameters. In particular, this study shows that highly crosslinked and fluorinated polymers can overcome deficiencies in previously-reported microvalve architectures, particularly limited solvent compatibility. Substrate surface modification is shown effective in reducing the friction of the polymer-glass interface and thereby facilitating valve actuation. A microchip one-way valve constructed using this architecture shows a 2 x 10(8) ratio of forward and backward flow rates at 7 MPa. This valve architecture is integrated on chip with minimal dead volumes (70 pl), and should be applicable to systems (including chromatography and chemical synthesis devices) requiring high pressures and solvents of varying polarity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfabrication of Functional Gels and Application to Controlled Drug Releace Microchip

Recently, stimuli-responsive polymer gels attract attention as functional soft materials in the research fields of microfluidic systems. Several applications as a smart microvalve or micropump to switch the direction of flow automatically or extrude fluid are attempted (1, 2). Conventional microvalves made of hard and dry materials such as piezoelectric elements (3), shape-memory alloy (4), etc...

متن کامل

Development and Application of Integrated Silicon-in-plastic Microfabrication in Polymer Microfluidic Systems

Title of Document: DEVELOPMENT AND APPLICATION OF INTEGRATED SILICON-IN-PLASTIC MICROFABRICATION IN POLYMER MICROFLUIDIC SYSTEMS Likun Zhu, Doctor of Philosophy, 2006 Directed By: Associate Professor Don L. DeVoe, Department of Mechanical Engineering Polymer-based microfluidic devices can offer a number of advantages over conventional devices, and have found many applications in chemical and bi...

متن کامل

Dynamics of Microvalve Operations in Integrated Microfluidics

Pneumatic microvalves are widely used key components for automating liquid manipulation and flow control in microfluidics for more than one decade. Due to their robust operations and the ease of fabrication, tremendous microfluidic systems have been developed with the multiple microvalves for higher throughput and extended functionalities. Therefore, operation performance of the microvalves in ...

متن کامل

Control of pressure-driven components in integrated microfluidic devices using an on-chip electrostatic microvalve

Pressure-driven actuators play a critical role in many microfluidic technologies, but the ancillary equipment needed to operate pneumatic and hydraulic platforms has limited their portability. To address this issue, we created an electrostatic microvalve used to regulate pressures in hydraulic control lines. In turn, these control lines are able to actuate pressure-driven components, e.g., micr...

متن کامل

Design, fabrication and characterization of a novel gas microvalve using micro- and fine-machining

In this paper, we present the design, fabrication and characterization of a novel gas microvalve realized by combining microand fine-machining techniques. The design is for high flow rates at high pressure difference between inlet and outlet, burst pressure of up to 15 bars. There is no power consumption required for the valve to maintain its position during operation in any intermediate state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2005